
JANUARY 2010 ANALYSIS QUALIFYING EXAM

KELLER VANDEBOGERT

1. Problem 1

(a). Let (xn)n∈N be Cauchy and fix ε > 0. By uniform continuity, there

exists δ such that ρ(x, y) < δ implies σ(f(x), f(y)) < ε for all x, y ∈ X.

We may choose N such that m, n > N implies ρ(xn, xm) < δ, so that

σ(f(xn), f(xm)) < ε, and (f(xn))n∈N is Cauchy as well.

(b). Let (xn)n∈N be Cauchy. By completeness, xn → x ∈ X, and, by

continuity, f(xn) → f(x). But then (f(xn))n∈N is convergent, hence

Cauchy in Y .

2. Problem 2

2.0.1. (a). M is a σ-algebra if

(1) ∅, X ∈M

(2) U ∈M =⇒ U c ∈M

(3) If U1, U2, · · · ∈ M, then
∞⋃
n=1

Un ∈M

(b). Let σ(C) denote the desired σ-algebra. We may define

σ(C) :=
⋂
M⊃C

{M is a σ − algebra}

Obviously the intersection of σ-algebras is again a σ-algebra, and this

is minimal with respect to inclusion by definition.
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(c). We merely consider countable unions and complements.1

If A ∈M, then A can be written as A =
⋃∞
n=1Cn for Cn ∈ C. Then,

f−1(A) =
∞⋃
n=1

f−1(Cn) ∈M

or, A = Cc, C ∈ C. Then,

f−1(A) = f−1(C)c ∈M

So we are done.

3. Problem 3

Define

A :=
⋂
n>1

⋃
m>n

Am = lim sup
n→∞

An

As ν(
⋃
m>1Am) 6

∑
m>1 2−m = 1, we see

ν(
⋂
n>1

⋃
m>n

Am) = lim
n→∞

ν(
⋃
m>n

Am)

6 lim
n→∞

∑
m>n

2−m = 0

We also see that

µ(
⋂
n>1

⋃
m>n

Am) = lim
n→∞

µ(
⋃
m>n

Am)

> lim
n→∞

µ(An)

= ε

(b). We merely take the contrapositive. Suppose that there exists ε > 0

such that for all δ, ν(A) < δ but µ(A) > ε. Then, choose An such that

ν(An) < 2−n but µ(An) > ε. Setting A :=
⋂
n>1

⋃
m>nAm, part (a)

shows that

ν(A) = 0, but µ(A) = 0

1Intuitively, one may think about the σ-algebra generated by a set as doing
the ”bare minimum” to become a σ-algebra, that is, just take complements and
countable unions.
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So we are done.

4. Problem 4

Suppose for sake of contradiction that the conclusion is false. Then,

fn(0) = 1, but fn(x) > min{1, 1/x}, so that fn > χ[0,1] +
χ(1,∞)

x
. Inte-

grating this inequality, we findˆ ∞
0

fn(x)dx >
ˆ 1

0

dx+

ˆ ∞
1

1

x
dx =∞

which is a contradiction.

(b). By part (a), f 6 min{1, 1/x} as well, so thatˆ ∞
0

|fn − f |dµ 6 2p
ˆ ∞
0

min{1, 1/x}dµ

= 2p + 2p
ˆ ∞
1

1

xp
dx

= 2p +
2p

p− 1
=

p2p

p− 1
<∞

Then, by Lebesgue’s dominated convegence theorem, we may inter-

change the order of the limit and integral, whence

lim
n→∞

ˆ ∞
0

|fn − f |dµ = 0

5. Problem 5

(a). Suppose 1
p

+ 1
q

= 1. Then,

||fg||1 6 ||f ||p||g||q

(b). By Hölder’s inequality for p = 4, q = 4/3,ˆ 1

0

x60f ′(x)1/4dx 6
( ˆ 1

0

x80
)3/4(ˆ 1

0

f ′(x)dx
)1/4

=
( 1

81

)3/4
· (f(1)− f(0))1/4

=

(
f(1)− f(0)

)1/4
27
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For equality to hold, we need that(
x60
)4/3

= f ′(x)

=⇒ f ′(x) = x80

=⇒ f(x) =
x81

81

Then, we see that

ˆ 1

0

x60 · f ′(x)1/4dx =

ˆ 1

0

x80dx

=
1

81

=

(
f(1)− f(0)

)1/4
27

6. Problem 6

Note that by absolute continuity, we may write

f(y)− f(a) =

ˆ y

a

f ′(t)dt

Then,

(f(y)− f(a))n−1f ′(y) =
(ˆ y

a

f ′(t)dt
)n−1

f ′(y)

=
d

dy

( ´ y
a
f ′(t)dt

)n
n

So that

lim
n→∞

(ˆ x

a

(f(y)− f(a))n−1f ′(y)dy
)1/n

= lim
n→∞

1

n1/n

(ˆ x

a

d

dy

( ˆ y

a

f ′(t)dt
)n
dy
)1/n

= lim
n→∞

1

n1/n

ˆ x

a

f ′(t)dt

= f(x)− f(a)

Which yields the result, as contended.
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7. Problem 7

(a). We see:

||f ∗ g||1 =

ˆ
R

∣∣∣ ˆ
R
f(y)g(x− y)dy

∣∣∣dx
6
ˆ
R
|f(y)|

ˆ
R
|g(x− y)|dxdy (Fubini-Tonelli)

=

ˆ
R
f(y)dy||g||1

= ||f ||1 · ||g||1

(b). Note first that the mean value theorem gives that

|f(x)− f(y)| 6 2010|x− y|

Then, by a simple change of variable, we see

(f ∗ g)′(x) = lim
h→0

ˆ
R

f(x+ h− y)− f(x− y)

h
· g(y)dy

We see that the integrand is bounded by 2010 · |g(y)|, so that sinc

g ∈ L1(R), we may employ Lebesgue’s dominated convergence theorem

to interchange the order of the limit and integral to find

(f ∗ g)′(x) =

ˆ
R

lim
h→0

f(x+ h− y)− f(x− y)

h
· g(y)dy

=

ˆ
R
f ′(x− y)g(y)dy

= (f ′ ∗ g)(x)

As asserted.

8. Problem 8

(a). f is holomorphic if and only if

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
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(b). Note that

∂2u

∂x2
+
∂2u

∂y2
=

∂

∂x

∂u

∂x
+

∂

∂y

∂u

∂y

=
∂

∂x

∂v

∂y
− ∂

∂y

∂v

∂x

= 0

(c). In view of the standard definition of the Wirtinger derivatives, it

suffices to show
∂

∂z

∂

∂z
log(|f |) = 0

Now, we may write log(|f |) = 1
2

log(f) + 1
2

log(f), so that

∂

∂z
log(|f |) =

1

2f

∂f

∂z
+

1

2f

∂f

∂z

=
1

2f

∂f

∂z

And, taking ∂
∂z

of the above,

∂

∂z

∂

∂z
log(|f |) =

−1

2f
2 ·
(∂f
∂z

)∂f
∂z

+
1

2f

∂

∂z

∂f

∂z

=
1

2f

∂

∂z

(∂f
∂z

)
= 0

So that log(|f |) is harmonic, as desired.

9. Problem 9

(a). Suppose that z0 is a zero of f , so that

f(z) = (z − z0)g(z), g(z0) 6= 0

Then,

f ′

f
=
n(z − z0)n−1g(z)

(z − z0)ng(z)
+

(z − z0)ng′(z)

(z − z0)ng(z)

=
n

(z − z0)
+
g′(z)

g(z)
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Note that if f has no other zeroes, g′(z)
g(z)

is holomorphic, so that
ˆ
γ

g′(z)

g(z)
dz = 0

by Cauchy’s integral theorem. Then, using the above,ˆ
γ

f ′

f
dz =

ˆ
γ

n

z − z0
= 2πin

Now, more generally, suppose

f(z) =
k∏
i=1

(z − zi)ni · g(z)

where g(zi) 6= 0 for any i. Then,

f ′(z)

f(z)
=

k∑
i=1

ni
z − zi

+
g′(z)

g(z)

And, setting N :=
∑k

i=1 ni, we see:ˆ
γ

f ′(z)

f(z)
dz = 2πi ·N

(c). N is simple the sum of the orders of the zeroes of f ; that is, we

are counting the zeroes of f with multiplicity.

10. Problem 10

(a). False. The Cantor function is the standard counterexample, as

f ′(x) = 0 a.e, f is monotone increasing, yet,

f(1)− f(0) = 1 6= 0 =

ˆ 1

0

f ′(x)dx

(b). False. Set

fn(x) :=

{
−2n2x+ 2n, x ∈ [0, 1/n]

0, x ∈ [1/n, 1]

Then, fn → 0 pointwise a.e, but,ˆ 1

0

fn(x)dx = 1 for all n ∈ N



8 KELLER VANDEBOGERT

(c). True. We may choose a neighborhood of 0 containing our se-

quence. Then, by the Casorati-Weierstrass theorem, f(U\{0}) is dense

in C; that is, we may find zn such that f(zn)→ 2010i and zn → 0.


